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Abstract: 
The author describes his four-decade interest in the geometry of small nonoverlapping circles on 

spheres and their relation to normal polyhedra. He discusses the varieties of circle-sphere geometry and 

their association with mosaics of circle-shape permanent magnets on spheres. He outlines the stages in 

developing his long-running, open-ended, artwork, an analog model of the atom’s electronic 

architecture based on circlesphere geometry. 
 
“If you have had your attention directed to the novelties of thought in your own lifetime, 
you will have observed that almost all really new ideas have a certain aspect of 
foolishness when they are first produced.” Alfred North Whitehead: 

 

 Standard polyhedra, tetrahedra, cubes, octahedra... have a sister variety of hedra 

whose faces are circles instead of polygons. I call these interesting forms that lack a 

customary name, “circlespheres”. The occasional references I have found for circles on 

spheres in mathematics are concerned with the problem of how, most economically, to pack 

a number of equal nonoverlapping circles on a sphere.  
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 Circlespheres have led me, as an artist, into a quite different path from that of 

mathematicians. My fascination from the beginning, going back forty years, was with the 

visual and tactile experience of exploring the many varieties of circlespheres and, finally, with 

an intense period of studying the history of models of the atom, I began working on what has 

become a complex multimedia artwork, “Portrait of an Atom”, whose geometrical order is of 

this fascinating circle geometry. 

 My study began not from any special interest in the mathematics of circles and 

spheres but rather from exploring the straight-line geometry of my steel tube and cable 

sculptures. They were, in 1960, an unusual and new type of structure I had discovered 

twelve years earlier and called “Floating Compression”. The engineer/architect Buckminster 

Fuller later made up the name that has stuck: “tensegrity” from tension and integrity. 

 To define tensegrity is difficult because it has become a buzzword for any object or 

architectural idea that includes visible tension wires. In my art, tensegrity refers to a 

lightweight modular structure of three or more compression struts pushing out against a 

closed network of nonredundant tension wires. The whole system is so arranged that the 

struts contact only the external prestressed tension network, not one another. (Fig. 1) 

 
 I was working in my studio all that year, 1960, building models to learn more about 

the many tensegrity forms, their modular properties and the puzzle of putting these 

complicated, often frustrating, structures together. It was an especially exciting time 
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because I knew it was not likely that anyone anywhere had studied the floating compression 

principle before. I did consider that in some ancient day, in China perhaps, a scholar had 

traveled the same path, maybe constructing objects out of silk cord and bamboo sticks. If so 

the record was not to be traced in everyday sources. 

 In order to move on from one discovered form to another, deciding what to do next, I 

often asked “what if”. One such question came from noticing the changes that were possible 

in a single configuration if I altered the lengths of tension members. Put it this way: because 

the tendons can be lengthened or shortened relative to one another thereby changing the 

form while still maintaining a stable structure, I might construct a series of transformations 

and then photograph them in sequence and see the changes in animation. 

 For example, to see the way the octahedral12-strut tensegrity form can transform 

into cube, I constructed just four stages of the mutation. To do it properly would have 

required a dozen or more in-between stages. Nonetheless the propeller-spinning of each strut 

could be clearly seen from one stage to the next. (Fig. 2) 

 
 This study of spinning rods had distracted me from tension lines and compression 

struts to focus on the implied cyclical motion within the forms. These traces would of course 

be circles. In an effort to describe the rotations I first made cardboard disks and taped them 

together but the results were inelegant and they did not truly define the sticks’ motion 

planes. They did awaken my interest in looking seriously at hedra composed of circles. 

 Most opportunities in life arrive by accident. My circle-motion fascination would soon 

have faded had it not been that my studio was but a short walk to New York’s Canal Street, 

which in those years was still a place to go rummaging through stores stocked with odd 

industrial mistakes and manufacturing surplus items. With my mind fixed on rings and circles I 

discovered at “Industrial Plastics” a big bin of thin bracelet-like plastic rings. They were 

cream-colored, semitranslucent and mixed 3, 4 and 5 inches in diameter. 
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 Suddenly from puzzling over what kind of circle objects -- washers? large keyrings? -- 

I might use to construct rings on spheres, I had stumbled onto a supply of perfect rings, 

more than I possibly could have imagined, ten for a dollar. Seeing this as a rare opportunity I 

bought three hundred on the first visit and the next day, fearful they would be disappear, I 

returned to the store and at a very special price emptied the entire bin of somewhat over 

five-hundred rings. 

 

 
 Back in the studio, I devised a jig for drilling 2, 3, 4...  tiny holes in the edges of the 

rings at the contact positions the particular form required. I began tying them hole-to-hole 

with nylon fishing line and tight square-knots to create the various circlesphere cages simply 

from deducing what symmetry choices were likely. 

 I set only these initial rules, virtually the same ones applied by the mathematicians 

investigating the problem of economical packing. 

 1. Non-overlapping small circles must be of the same size on a sphere. 

2. The space between the circles, that is the interstitial spaces, must be smaller than 

a circle’s diameter; open nets are disallowed. 

 Over the following days and weeks I drilled hundreds of holes and with worn and raw 

fingers I tied hundreds of knots in creating what became an impressive assortment of 

circlespheres and their spaceframe matrices. In the process of constructing them I quite fell 

in love with the beauty and order of these unusual objects (Fig. 3 Many circlesphere 

configurations.) 
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Some of the unit cells are clearly familiar polyhedra except with circle faces but 

others are uniquely circlespheres with no polyhedron equivalent. 

 In normal polyhedra, the faces take up the total surface. There are no inbetween 

spaces. In circlespheres the opposite is true: the gaps between circles are concave polygons; 

triangles, squares, pentagons or hexagons. 

 Four of the circlesphere forms have triangle interstices only: A 3-circle prism has, top 

and bottom, two triangle openings. The 4-circle tetrahedron has triangles at the 4 vertex 

locations. A cube made of 6 circles has 8 triangles at the corner positions. A 12-circle pentic-

dodecahedron has 20 triangles at the icosahedral positions. (Fig. 4) 

 
 A few circlespheres such as the 12-circle rhombic and the 12-circle trapezo-rhombic 

dodecahedrons have both triangle and square interstices. (Fig. 5) 
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Most interesting though are the figures whose open spaces involve an even number of 

circles, 2, 4 or 6. These sets can be checkerboarded with 2 colors so that no rings of the 

same color contact one another.  

 There are 7 such sets. The list includes the simplest of all: 2 circles in contact 

straddling the equator. The 2 rings share a common face-to-face interstice but they are 

assigned opposite colors. 

 
 The checkerboard cages are those with 2, 5, 8, 10, 14, 18 and 32 rings. (Fig. 6) 

 The 8-circle checkerboard arrangement is octahedral. The 2 other 8-circle figures, an 

antiprism and a curious figure I call a “bird house”, are composed partly of triangular 

interstices so they do not checkerboard. (Fig. 7) 

 
Among the 7 binary cages, only the figure with 18 circles, a rhombicuboctahedron, 

has open spaces comprising 6 rings and is the least sturdy of all the circlespheres. 

Because my plastic circles included 3, 4 and 4 inch rings I experimented 

briefly with the possibilities of using different size rings on a sphere but there 

seemed to be no way to be certain the varied rings were forming a true sphere. 

Clearly one might apply any number of smaller and larger circles on a big sphere and 

arrive at many orders of complexity.  
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I did discover an interesting fact about the 4-circle tetrahedral sphere: that 

any size-combination of four rings in tangent contact assembled as a tetrahedron 

will define a true sphere. I constructed two demonstration devices to illustrate this 

principle in different ways. (Fig. 8) 

 
After a few months of tying rings together, photographing them and deciding what to 

do next, I could look about my studio and see a dense garden of skeletal cells and matrices, 

including special sets with checkerboard patterns throughout. (Fig. 9)  

 
These many cages sat on every available surface; additionally many hung from the 

ceiling. As the numbers grew I was endlessly delighted to reflect on my good fortune of 
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finding Industrial Plastic’s surplus rings, uninteresting to passersby who saw only a bin-full of 

surplus junk, whereas they had now become a jewel-case of surprising geometrical objects. 

 It was in May of 1961 I was buying nylon line at a hardware store when my eye fixed 

on a rack with magnetic refrigerator towel hooks. They were round. Thinking always of the 

circlespheres and the binary mosaics, I had a flash of association, a link connecting binary 

checkerboard spheres and the physical binariness of north and south magnetic polarities. 

Chance and fortune do indeed favor the prepared mind. My mind was on the checkerboarded 

8 circles of the octahedral circlesphere so I bought 8 of the magnetic hooks. 

 Back at the studio I excitedly pried the magnets out of their steel casings. Yes, they 

were round disks made of ceramic magnetic material and they measured 30mm in diameter 

by 3mm thick. At the center of each magnet was a 5mm hole; an important detail. I stacked 

up the 8 magnets with all poles in parallel, that is all facing the same direction and they stuck 

tightly together. If I tried to reverse 2 or 3 of them they repelled with equal force. Placing 

one next to another lying on the table I verified that they were magnetized through the flat 

surface with north and south poles on opposite faces like heads and tails of a coin – or, as I 

later learned, like the magnetic field of a current loop of electricity. (Fig. 10) 

 
 

 With 2 magnets lying flat next to one-another if both had their north poles facing up, 

their parallel edges repelled one another. If I flipped one magnet over, their edges clicked 

together: magnetic antiparallel. So that’s the way their fields of magnetism work. 

 Could they be made to connect successfully if placed in the proper positions of the 8-

circle sphere? I tried in every way possible to hold them and make them stand up to form an 

octahedral circlesphere but they simply collapsed in a jumble. Apparently they needed to be 

somehow mounted in position. I decided to make an armature to support them in the 
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octahedron’s face locations. Using a plastic marble about 25mm in diameter I bored and 

tapped eight holes to receive brass threaded-rod, non-magnetic, as posts to fit the magnets 

on. 

 Setting each one on its own axle, north to south, north to south, they magically clung 

together edge-to-edge on the armature, forming a perfect octa-circlesphere, astonishing how 

they linked one-to-another. I found that if I held any one of the 8 with thumb and forefinger 

and turned it like a wheel, surprisingly, the entire set followed along, an 8-gear differential. 

(Fig. 11) 

 
 No single learning event in life has come close to the elation and wonder I felt at that 

moment, discovering a quite unexpected relationship, straight from the core of the cosmos, 

so it seemed to me: a marriage of natural binary principles. The first, a fundamental 

mathematical property of symmetry points on a sphere; the second, the simple bipolarity of 

north/south magnetism. Clearly the 8-circle magnet cell was but one of seven checkerboard 

circlespheres that could perform in the same remarkable way. 

 I ordered a quantity of magnets from the manufacturer and constructed the 

remaining 6 checkerboard spheres, (Fig. 12) 

 



 10 

going on then to make examples of magnetic spaceframes in which the north/south 

association of the individual cells are continuous through an endless repetition of magnet 

spheres. (Fig. 13) 

  
If instead of permanent magnets these matrices were composed of current loops the 

electrons traveling in the wires would also be moving in the same clockwise/counterclockwise 

three-dimensional, endless, chain. 

 Years later when I could finally think far enough distance from my circlesphere 

occupation I made what seems now an obvious extension of the magnet mosaics: The 

checkerboard principle works just as well with certain normal polyhedra by using flat polygon 

shaped magnets polarized on opposite faces. The polyhedra that can be checkerboarded 

include the octahedron, the cuboctahedron, the rhombicuboctahedron, the 

icosidodecahedron, the rhombicosidodecahedron, and others. Like the circle magnets some 

of the magnet polyhedra can translate indefinitely as endless magnetic space frames. Unlike 

the circle-magnet spheres these systems are self-supporting without armatures. (Fig. 14) 
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(Fig. 15) 

It may seem odd to some that this magnet adventure led to thoughts about atoms. 

But consider the fact that atoms are spheres, that atoms bond to one another at geometrical 

angles, that electrons within the atoms are the source of the active magnetism in the 

permanent magnets, that electrons fill shells in discrete numbers. And here in the magnet 

circlespheres was a curious coincidence: the numbers of magnets in the checkerboard 

spheres: 2, 5, 8, 10, 14, 18 and 32, were so near to the textbook list of shells and subshells 

of electrons: 2, 6, 8 ,10, 14, 18 and 32. Was it not reasonable for an inquisitive mind to 

consider an analogy with atoms and their electrons? 

 Those who have studied even a limited amount of physics and also those who have 

read about the quantum atom and the quantum revolution which began at the first part of 

the last century know that science does not know what an atom would look like if we could 

magically shrink down to the submicrocosm and try to see it -- nor how the atom’s electrons 

do their work to create its amazing performance as a tiny electro-mechanical device. For this 

reason all atom models are inventions of the mind, based on some kind of analogy from the 

visible world. 

The physicists’ earlier models from 1900 to 1924 used various analogies including a 

culinary one with J.J. Thomson’s raisons-in-pudding model. The final one of course is the 

“charge cloud” model whose electrons’ presence have been likened to vapor. (Fig. 16) 
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The best known physical analog is Neils Bohr’s planetary model. It was clear that for 

me to invoke the circlesphere geometry and magnet spheres to represent electrons moving 

about was, from a physics point of view, lunacy. First, of course, atomic physics had 

abandoned the Neils Bohr conception of electron orbits many years ago. Even worse than 

planetary electron orbits, my thoughts of electrons traveling in small circles off-center from 

the nucleus was the equivalent to imagining an Earth satellite, on top of the globe, circling 

the north pole.  

Still the urge to try was irresistible and I had the advantage of coming from the 

outside, never having studied quantum physics. It was only through wishing to resolve these 

dreams of geometrical atoms that I begin to go deeply into the subject of atom models and 

to start collecting a fine library of atomic physics and the history of the atom from the time 

of Democritus and Leucippus in ancient Greece. 

By 1930 atomic physics began prohibiting models that attempted to describe the 

workings of the atom’s electrons. The last such successful physical atom model arrived in 

1924 -- the French physicist Louis de Broglie’s model adapted from Bohr's 1913 planetary 

picture. There have been no other recognized ones since that time. It seemed best therefore 

for me to begin where Louis de Broglie’s model stopped – or was left incomplete. It was he 

who first imagined that material objects might have a wave aspect, mirroring Einstein’s 

discovery that radiation, light waves, have a particle aspect: photons. His theory is also at 

the root of the Schroedinger wave equation, although transformed from its original physical 

sense into mathematical formalisms. 

De Broglie pictured the hydrogen atom’s lone electron, not as a tiny missile racing 

around the nucleus as Neils Bohr had done, but as a circle-shaped standing-wave like a 

vibrating guitar string surrounding the nucleus. Like Neils Bohr’s particle electron, his 

matterwave electron inhabits only certain restricted orbits on electrical spheres, quantized in 

steps like notes on a piano. In order to move to a larger or smaller sphere (or energy level) 



 13 

the electron was required to perform electrical work, taking in or giving off specific amounts 

of energy, photons -- much like going up or down stairs. 

This image offered a logic for my circlesphere proposal: For while Bohr’s planet-

electron could not circumnavigate a small-circle orbit, why should a matterwave be prohibited 

from doing so as long as it remains on the same electrical sphere? My starting point, like de 

Broglie’s, is that electrons act not like missiles, but like waves and that they are genuine 

material items. 

  But I also include this: that each electron’s orbit has a matter-like barrier property by 

which it occupies its individual space, a circular shield that enables it to exclude others from 

its piece of atomic real estate. This proprietary property is reasonable physical interpretation 

of Wolfgang Pauli’s exclusion principle 

In contemporary textbooks one finds only a terse presentation of the de Broglie 

model, describing that at each successively larger circle surrounding the nucleus the electron 

includes an additional whole wave: The smallest orbit called the ground state has 1 wave. The 

second shell allows 2 waves, the third level, 3 etc. (Fig. 17). 

  
In a careful examination of de Broglie’s model I saw a curious property not really 

hidden, but certainly never commented on; one that is inherent in the Bohr analogy of the 

electron as a planet, acknowledging that planets in more distant orbits travel slower than 

those closer in. Similarly, the electron in the Bohr-de Broglie model slows down in its larger 

orbits with a resulting increase in the length of the wave. But increasing by how much? 

Remarkably, in its modular quantized way, the atom lengthens the electron’s orbital circle at 

each successive shell by the length of the ground-state’s circumference. Shell two’s 2 waves, 

for example, are each twice as long as the ground state’s wave. Its two waves then make the 
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orbital circle 4 times longer. Shell three’s waves are 3 times the ground state’s wave making 

its circle 9 times as long. Shell four’s waves are 4 times the ground state wave making its 

orbit 16 times as long. (Fig. 18) 

 
 If indeed anyone ever has noticed this odd geometrical fact the likely response was, 

“so what?” But to me it suggests how the electron uses quantization in a very special way. 

At the very least it reveals that at each shell the electron assumes a specific wavelength, 

vibrating like a musical tone, a note to be found only at that sphere and at no other within 

the atom. It becomes the basis in my model for proposing that the electron is always on 

automatic pilot and that its wavelength is keyed to a specific energy sphere; an interlock. 

The electron’s altitude dictates its wavelength and vice versa. 

 This becomes useful in a significant way -- for providing the electron its required 

optional orbits for each shell, normally designated “s” electrons “p” electrons, “d” electrons, 

etc., names left over from 19th century spectroscopy. For example: the third shell is required 

to have three options: 3s, 3p and 3d. Its normal 3s de Broglie orbit, the equatorial state, has 

three waves.  

According to my model when the orbital wave surrounding the equator is pressured 

by its neighbors it can no longer control that prime space. Crowding on the shell will demand 

that it confine itself by folding its three-waves into two, a snake eating its tail. Squeezed in 

this way the orbit cannot encompass the equator but it remains on the same electrical 

sphere (3p state) in a small circle whose circumference is two proper 3rd shell wavelengths. 

With even greater crowding, the matterwave can retract into its ultimate confinement, a one-

wave, 3d state. It now completes each revolution in a third the time of the equatorial orbit. 

(Fig. 19)  
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 By this process the 4th shell will have four options (4s, 4p, 4d and 4f), the 5th shell 

five, etc. Electrons compressing one another is not the only reason non-equatorial orbits 

occur. They also happen in my model when incoming light lifts the electron momentarily from 

the ground-state, for example, to a one-wave state in a higher shell. 

 Thus, the circlesphere geometry converts the Bohr-de Broglie pancake atom into a 

fully three-dimensional one. The familiar textbook pictures of the Schroedinger balloon-lobes 

reaching out from the nucleus provide the electrons hands and arms -- like ball-and-stick lab 

models -- for connecting atom-to-atom. This directional, geometrical, need is satisfied in the 

circlesphere atom’s orbits which, while remaining on their own energy shells, still project from 

the nucleus into the surrounding space for bonding. (Fig. 20)  

 
In my view, the standard model’s awkward geometrical solution is analogous to the 

planetary epicycles of Ptolemy, mathematically correct but physically untenable. Circlesphere 

geometry, eminently adaptable for the purpose, has been waiting in the wings until a likely 

mechanism might arrive to turn it into an atom. 

In brief, then, here is my artwork atom: The electrons are circle-shaped standing-wave 

objects. Each matterwave is a perpetual, friction-free, disturbance on an equipotential 
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sphere. The sphere they ride on is real only through the electrons’ presence. Without them 

the protons’ electrical field is but a force radiating from the nucleus but without punctuation. 

 The electron orbits are, themselves, tiny devices equipped with 5 distinct forces 

through which they interact with one another: 

 

 1. De Broglie’s matter waves posses a barrier property enabling them to 

exclude one-another. Thus the solidity of material objects begins at the atomic level 

with the individual electron. While electrical attraction to the nucleus is the atom’s 

tension strength, the matterwave’s solidity is its compression resistant strength. All 

structures need both tension and compression. Matterwave solidity is a genuine force 

because when pushed against it pushes back. 

 2. The particle electron’s negative charge. It is the electrons’ attraction to the 

nucleus that binds them to the atom: a tension force. In a normal atom electrons and 

protons neutralize electricity. In orbit this negative field is evenly distributed 

throughout the circular matterwave. 

 3. Spin: an intrinsic magnetic and top-like property of the particle electron. 

Traveling within the wave, the electron’s spin can be in the same direction as the 

orbit or by inverting it can “spin” in the opposite direction. 

 4. A second magnetic field, orbital magnetism, arises out of the particle’s 

electrical charge circling in orbit. Orbital magnetism can be either enhanced or 

diminished by the orientation of the electron’s spin; an energy-conserving toggle.  

 5. The electron’s tiny mass revolving in orbit gives rise also to a gyroscopic 

angular momentum that adds to the wave-orbit’s stability. 

 
(Fig. 21) 
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As individual torus modules the matterwave orbiting electrons are the atom’s building 

blocks. They keep one-another out but they can adhere through magnetic attraction. In 

constructing an atom the electron waves fill up the shells one-by-one and when a shell 

becomes crowded, the next members start a new shell. Magnetism plays a significant role in 

designing the shell’s circlesphere configuration. (Fig. 22) 

 

 
 In the same way that water in a pond seeks its own level, electrons, too, arrange their 

assorted forces to maintain the atom at its minimum energy state. Though they are but 

pseudo objects, ethereal pathways of perpetual motion, they are the atoms-within-the-atom 

that give rise to its architecture. They are the substance of all the things we know as matter, 

from a puff of steam to the hardness of a diamond. 

My atom model has been shown in art museums as well as science museums and, as a 

means for publishing, I hold two U.S. mechanical patents defining the model’s main 

magnetic/geometric properties. On the web a search engine will turn up numerous links from 

educational websites to “Snelson Atom”. 

Again, this is not a work of science but a work of art. Even so, over the years I have 

enjoyed discussing my atom model and corresponding with many scientists including Linus 

Pauling, Richard Feynman, Philip Morrison, Eugene Wigner and Hans Christian von Baeyer. 

None have given it a ringing endorsement. One physicist said, “Just because it’s beautiful 

doesn’t make it right.” Another said, “It’s just not the way an atom ought to look.” 

 Science writers advise us over-and-over that the instant we reach down into the 

quantum world we are entering a realm so unfamiliar, so strange, that we should not expect 

things to make any sense. It is this self-fulfilling belief which has, in my opinion, kept 
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scientists from arriving at a physical model on their own. The choice of appropriate 

geometries is limited and it is certain that when the atomic physicists’ curious world-view 

concerning the atom swings in another direction, as attitudes do over time, the phenomenon 

of circlespheres and their association with magnetism will be discovered as a rich field to 

explore. 

=================================================================== 
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